Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Virol ; 81(4): 1858-71, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17121797

RESUMO

Sapoviruses are one of the major agents of acute gastroenteritis in childhood. They form a tight genetic cluster (genus) in the Caliciviridae family that regroups both animal and human pathogenic strains. No permissive tissue culture has been developed for human sapovirus, limiting its characterization to surrogate systems. We report here on the first extensive characterization of the key enzyme of replication, the RNA-dependent RNA polymerase (RdRp) associated with the 3D(pol)-like protein. Enzymatically active sapovirus 3D(pol) and its defective mutant were expressed in Escherichia coli and purified. The overall structure of the sapovirus 3D(pol) was determined by X-ray crystallography to 2.32-A resolution. It revealed a right hand fold typical for template-dependent polynucleotide polymerases. The carboxyl terminus is located within the active site cleft, as observed in the RdRp of some (norovirus) but not other (lagovirus) caliciviruses. Sapovirus 3D(pol) prefers Mn(2+) over Mg(2+) but may utilize either as a cofactor in vitro. In a synthetic RNA template-dependent reaction, sapovirus 3D(pol) synthesizes a double-stranded RNA or labels the template 3' terminus by terminal transferase activity. Initiation of RNA synthesis occurs de novo on heteropolymeric templates or in a primer-dependent manner on polyadenylated templates. Strikingly, this mode of initiation of RNA synthesis was also described for norovirus, but not for lagovirus, suggesting structural and functional homologies in the RNA-dependent RNA polymerase of human pathogenic caliciviruses. This first experimental evidence makes sapovirus 3D(pol) an attractive target for developing drugs to control calicivirus infection in humans.


Assuntos
RNA Polimerase Dependente de RNA/química , RNA Polimerase Dependente de RNA/metabolismo , Sapovirus/enzimologia , Proteínas Virais/química , Proteínas Virais/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , Magnésio/metabolismo , Manganês/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Molecular , RNA Viral/biossíntese , Moldes Genéticos
2.
Bioorg Med Chem ; 14(9): 3002-10, 2006 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-16403639

RESUMO

In vivo, 2-keto-3-deoxy-6-phosphogluconate (KDPG) aldolase catalyzes the reversible, stereospecific retro-aldol cleavage of KDPG to pyruvate and D-glyceraldehyde-3-phosphate. The enzyme is a lysine-dependent (Class I) aldolase that functions through the intermediacy of a Schiff base. Here, we propose a mechanism for this enzyme based on crystallographic studies of wild-type and mutant aldolases. The three dimensional structure of KDPG aldolase from the thermophile Thermotoga maritima was determined to 1.9A. The structure is the standard alpha/beta barrel observed for all Class I aldolases. At the active site Lys we observe clear density for a pyruvate Schiff base. Density for a sulfate ion bound in a conserved cluster of residues close to the Schiff base is also observed. We have also determined the structure of a mutant of Escherichia coli KDPG aldolase in which the proposed general acid/base catalyst has been removed (E45N). One subunit of the trimer contains density suggesting a trapped pyruvate carbinolamine intermediate. All three subunits contain a phosphate ion bound in a location effectively identical to that of the sulfate ion bound in the T. maritima enzyme. The sulfate and phosphate ions experimentally locate the putative phosphate binding site of the aldolase and, together with the position of the bound pyruvate, facilitate construction of a model for the full-length KDPG substrate complex. The model requires only minimal positional adjustments of the experimentally determined covalent intermediate and bound anion to accommodate full-length substrate. The model identifies the key catalytic residues of the protein and suggests important roles for two observable water molecules. The first water molecule remains bound to the enzyme during the entire catalytic cycle, shuttling protons between the catalytic glutamate and the substrate. The second water molecule arises from dehydration of the carbinolamine and serves as the nucleophilic water during hydrolysis of the enzyme-product Schiff base. The second water molecule may also mediate the base-catalyzed enolization required to form the carbon nucleophile, again bridging to the catalytic glutamate. Many aspects of this mechanism are observed in other Class I aldolases and suggest a mechanistically and, perhaps, evolutionarily related family of aldolases distinct from the N-acetylneuraminate lyase (NAL) family.


Assuntos
Aldeído Liases/química , Aldeído Liases/metabolismo , Aldeído Liases/classificação , Aldeído Liases/genética , Sítios de Ligação , Catálise , Escherichia coli/enzimologia , Escherichia coli/genética , Ácido Glutâmico/genética , Ácido Glutâmico/metabolismo , Modelos Moleculares , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Especificidade por Substrato , Thermotoga maritima/enzimologia
3.
J Mol Biol ; 348(4): 971-82, 2005 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-15843027

RESUMO

Uridine diphosphogalactofuranose (UDP-Galf) is the precursor of the d-galactofuranose sugar found in bacterial and parasitic cell walls, including those of many pathogens. UDP-Galf is made from UDP-galactopyranose by the enzyme UDP-galactopyranose mutase. The enzyme requires the reduced FADH- co-factor for activity. The structure of the Mycobacterium tuberculosis mutase with FAD has been determined to 2.25 A. The structures of Klebsiella pneumoniae mutase with FAD and with FADH- bound have been determined to 2.2 A and 2.35 A resolution, respectively. This is the first report of the FADH(-)-containing structure. Two flavin-dependent mechanisms for the enzyme have been proposed, one, which involves a covalent adduct being formed at the flavin and the other based on electron transfer. Using our structural data, we have examined the two mechanisms. The electron transfer mechanism is consistent with the structural data, not surprisingly, since it makes fewer demands on the precise positioning of atoms. A model based on a covalent adduct FAD requires repositioning of the enzyme active site and would appear to require the isoalloxazine ring of FADH- to buckle in a particular way. However, the FADH- structure reveals that the isoalloxazine ring buckles in the opposite sense, this apparently requires the covalent adduct to trigger profound conformational changes in the protein or to buckle the FADH- opposite to that seen in the apo structure.


Assuntos
Transferases Intramoleculares/química , Transferases Intramoleculares/metabolismo , Klebsiella pneumoniae/enzimologia , Mycobacterium tuberculosis/enzimologia , Sequência de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , Flavinas/farmacologia , Ligantes , Modelos Moleculares , Dados de Sequência Molecular , Oxirredução , Estrutura Quaternária de Proteína , Alinhamento de Sequência
4.
Biochemistry ; 42(7): 2104-9, 2003 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-12590598

RESUMO

UDP-galactopyranose mutase is a flavoprotein which catalyses the interconversion of UDP-galactopyranose and UDP-galactofuranose. The enzyme is of interest because it provides the activated biosynthetic precursor of galactofuranose, a key cell wall component of many bacterial pathogens. The reaction mechanism of this mutase is intriguing because the anomeric oxygen forms a glycosidic bond, which means that the reaction must proceed by a novel mechanism involving ring breakage and closure. The structure of the enzyme is known, but the mechanism, although speculated on, is not resolved. The overall reaction is electrically neutral but a crypto-redox reaction is suggested by the requirement that the flavin must adopt the reduced form for activity. Herein we report a thermodynamic analysis of the enzyme's flavin cofactor with the objective of defining the system and setting parameters for possible reaction schemes. The analysis shows that the neutral semiquinone (FADH(*)) is stabilized in the presence of substrate and the fully reduced flavin is the anionic FADH(-) rather than the neutral FADH(2). The anionic FADH(-) has the potential to act as a rapid 1-electron donor/acceptor without being slowed by a coupled proton transfer and is therefore an ideal crypto-redox cofactor.


Assuntos
Transferases Intramoleculares/química , Quinonas/química , Proteínas de Bactérias/química , Benzoquinonas/química , Espectroscopia de Ressonância de Spin Eletrônica , Estabilidade Enzimática , Radicais Livres/química , Cinética , Klebsiella pneumoniae/enzimologia , Ligantes , Oxirredução , Potenciometria/métodos , Especificidade por Substrato , Termodinâmica , Uridina Difosfato Galactose/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...